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NATURAL WAVENUMBERS OF ACOUSTIC AND ELECTROMAGNETIC 

OSCILLATIONS IN THE VICINITY OF A CIRCULAR CASCADE 

WITH A CORE 

V. L. Okulov UDC 534.242-538.565 

For eigenvalue problems in diffraction theory the square of the wavenumber is usually 
adopted as the characteristic ("natural") parameter [I]. Rigorous and approximate methods 
are fairly well known for determining the natural wavenumbers (natural frequencies) of inner 
problems, but only the long-wave or short-wave approximations are considered for the most 
part in outer problems. The author is aware of only a few papers in which the eigenvalue 
problem has been solved in a rigorous setting (see, e.g., [2, 3] and the bibliographies there- 
in). In the present article we determine the natural wavenumbers of the outer problem of 
the diffraction of electromagnetic or acoustic waves by a plane circular cascade with a core 
(hub) in a rigorous setting, i.e., for arbitrary ratios of the cascade period to the wavelength. 

Circular cascades are customarily used to model the impellers or rotors of centrifugal 
compressors and fans. The solution of the eigenvalue problem should be useful in analyzing the 
acoustic resonance effect occurring in certain operating regimes of these machines [2]. Struc- 
tures analogous to circular cascades can be regarded as models of electrodynamic resonators, 
certain antennas, and waveguide devices. To predict their resonance properties it is also 
necessary to know the natural wave numbers of electromagnetic oscillations in the vicinity of 
similar open structures [i]. 

i. We consider a stationary plane circular blade cascade of diameter 2R formed by N 
thin radial blades (reflectors) attached to a circular core of radius r (Fig. i). Let the 
function @(p, 8) describe the wave amplitude of steady-state acoustic or electromagnetic os- 
cillations in the exterior of the cascade (p, 8 are polar coordinates with origin at the 
center of the cascade). The amplitude of the total field can be written in the form 

7V--i 

9= ~ q h ,  
'l=O 

where each component ~l of the total field satisfies: 

the homogeneous Helmholtz equation 

(A + k'-)~ = O, 
where k is an arbitrary complex number; 

the homogeneous Dirichlet (~ = 0) or Neumann (~ = i) conditions 

~l  =0 or O~jOn =0 

on t h e  b l a d e s  f o r m i n g  t h e  c a s c a d e  and on t h e  s u r f a c e  o f  the .  c o r e ;  

t h e  g e n e r a l i z e d  r a d i a t i o n ,  c o n d i t i o n  [3] 
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~l = ~.~ a~H~ :)(kp)exp(isO) ~r p > R, 

where H (I) s (kp) is a Hankel function of the first kind, with 0 ~ arg k < 2~; the condition of 
generalized periodicity with respect to 0 

~ ( p ,  0 + a )  = ~ ( p ,  0) exp  ( i~) ,  

w h e r e  a = 2~/N i s  t h e  0 s p a c i n g  o f  t h e  c a s c a d e  a n d  ~ = a l  c h a r a c t e r i z e s  t h e  p h a s e  

shift between the oscillations in the interblade channels; 

the condition of bounded energy at the sharp tips of the blades and at 0 = 0 in the case 
of a degenerate core (r = 0) [4]. 

We interpret the natural wavenumbers of the stated problem as those values of k for 
which there exists a nontrivial solution ~l satisfying all the enumerated conditions. We 

note that the results of [4] are valid for the stated problem. Consequently, the set of 
natural wavenumberson the complex plane is discrete, and all of them (except zero) lie below 
the real axis. 

2. We represent the solution of the problem in the form 

q)l = 

H~:) (O) 
' H t J IkB~ . . . .  

I w=Ns+l V x ! 

I ~ . ,.z-~o~ zv(km, J ~ o~v~ ~ - - ~ :  r < ~ p ~ R ,  O~O--o~m<o~, 
[ 2v=Ns  Z v (kR)  

s = 0, _____t, _____2 . . . . .  m = 0, t ,  2~ �9 � 9  N - -  1, 

( 2 . 1 )  

where bNs : (--l)~b_Ns ; 

expression 

= e x p  (i0); ~m exp(i~m), and the function Z is given by the 

[A ,  (kp), ,- = o,  ' 
Zv (kp) = / N v  (kr) Jv (kp) --  Jv (kr) Nv (kp),: r > 0, f~ = 0, 

[N'v (kr) Jv (kp) - -  J'v (kr) Nv (kp), r > 0,: ~ = 1, 

where J (x) and N(x) are Bessel and Neumann functions and the prime signifies the derivative 

with respect to p. By virtue of the finite-energy condition at the tips of the blades {a } 
n 

and {b } in (2.1) belong to the class of 12-sequences. We note that in the case of a degener- 
n 

ate core expression (2.1) coincides exactly with the representation of the secondary field 
in the problem discussed in [5] concerning a fan of thin strips. 

By virtue of the generalized periodicity property it is sufficient to match the solution 
(2.1) at 0 = R for 0 --< 0 < a. As a result, we obtain 

av~ v ~]  b~v~V~ (2.2) 
v = N s i l  2 v = ~ s  

Fig. I 
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E v H av~ ~ = ~ b2w~rz~, 0 ~ < 0 < c r  
v : N s W l  I 2v=Ns  

~nv = kH~ >' (kR)/H~) (kR), ;z = kZ'v (kR)/Zv (kR). 

Multiplying (2.2) by exp (--i(Ns + /)0} and integrating with respect to 0 from 0 to ~, 
we obtain an infinite system of algebraic equations, which can be written as follows after 
the elimination of a and certain identity transformations: 

z 

"~ ~:vG-r~-_~---0,  s = N s + l ,  s : 0 ,  ___1, ___2, . . . .  I ( 2 . 3 )  
2V:NS 

w h e r e  B2~ = b 2 9 ( 1  -- ( - - 1 ) s ~ ) .  We n o t e  t h a t  t h e  s y s t e m  ( 2 . 3 )  i s  o b t a i n e d  w i t h  t h e  f o l l o w i n g  

r e s t r i c t i o n s  on t h e  p a r a m e t e r s  i n v o l v e d  on i t :  The c a s e s  1 = 0 and 21 = N a r e  d i s r e g a r d e d  

( t h e y  w i l l  be  a n a l y z e d  b e l o w ) ;  t h e  v a l u e s  o f  k c o i n c i d i n g  w i t h  t h e  r o o t s  o f  t h e  e q u a t i o n s  
(~) 

K~s+ / (kR)  = 0 and ZNs /2 (kR)  = 0 a r e  e l i m i n a t e d .  The r o o t s  o f  t h e s e  e q u a t i o n s  d e t e r m i n e  t h e  

n a t u r a X  wavenumber s  o f  t h e  o s c i l l a t i o n s  i n  t h e  e x t e r i o r  o f  a c y l i n d e r  o f  r a d i u s  R and i n  t h e  
i n t e r i o r  o f  an  a n n u l a r  s e c t o r .  I n a s m u c h  a s  t h e  f o r m e r  i s  p o s s i b l e  o n l y  i n  t h e  l i m i t  r § R 
and t h e  e i g e n v a l u e s  o f  t h e  a n n u l a r  s e c t o r  a r e  r e a X ,  we can  e l i m i n a t e  s m a l l  n e i g h b o r h o o d s  o f  
t h e s e  q u a n t i t i e s .  

We h a v e  t h u s  r e d u c e d  t h e  s t a t e d  p r o b l e m  t o  t h e  d e t e r m i n a t i o n  o f  t h o s e  k f o r  w h i c h  t h e  
h o m o g e n e o u s  i n f i n i t e  s y s t e m  ( 2 . 3 )  h a s  a n o n t r i v i a l  s o l u t i o n .  

3.  We c o n s i d e r  t h e  c a s e s  1 = 0 and  21 = N. A f t e r  m a t c h i n g  t h e  s o l u t i o n  ( 2 . 1 )  on t h e  

arc p = R, 0~0 < a we have for 1 = 0 

E a v ~ v  ~ 'v  H v g b2v~ v, ~] av~ ;v "~ ( 3 . 1 )  = = b~v~ ~v 
v=Ns 2v=Ns  ~=Ns 2v=Ns 

and for 21 = N 

E av~ v =  E b2v~V, , ~. a.~V;v n =  E b~v~v; z- (3.2) 
2~=N(2s+l )  2v�88 2v=N(2s+l )  2v=Ns 

Proceeding as in the derivation of (2.3), we obtain the following systems of equations from 
(3.1) and (3.2): 

for l = 0 

H 
c ( 3 . 3 )  

"5- b ~ a ( ; ~ - -  ;z ) -+  - ~ b~, ~ z - ~ z  0, a = N n ,  n = 0 ,  t, 2 �9 
02 V2 �9 �9 �9 r 

2~ ' :N(2n+  1) 

for 21 = N 

/-/ Z 
c ~a - -  ~v --~-b2~(~--~z) ,+_ ~ b2~ o~_-VZ~-=0, 2 ~ = N ( 2 n + I ) ,  

~=JVn 

n = 0, I ,  2 . . . . .  c =-- const.  

(3.4) 

Adding and subtracting the equations for identical q, we infer from (3.3) and (3.4) that for 
1 = 0 

-~ b2~ (;~ -- ;~) = 0; (3.5a) 

H Z" 

b ~  = O, ~ I Nn,  n = O, t, 2, " 
2v:N(2n+I) ~ .... (3.5b) 

for 21 = N 
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( ; o  = o ;  
-~ (3.6a) 

H __ ~v Z 
b~v ~ --0, 2 c r = N ( 2 n + t ) ,  n = 0 ,  t, 2 . . . .  

0 2 ,V 2 v=Nn ( 3 . 6 b )  

It is evident from Eqs. (3.5a) and (3.6a) that nonzero amplitude coefficients in the 
expansion (2.1) can exist when the expression in the parentheses vanishes. To determine the 
conditions for this to be possible we note that 

[ leo 
; ~_  ;z ~_ {Coil(l)(kr) 

[ c.H(o 1)~ (kr) 
\ 

where Co = --2(~kRH(X)o (kR)Z (kR))-1 Analyzing 

f o r  r ~ 0~: 

for r > 0,, .~ = O, 

for r > O j  ~ = i ~  

(3.7), we infer that: a) For a degenerate 

(3.7) 

core (r = 0) and finite k the coefficients b in Eqs. (3.5a) and (3.6a) can only be zero; b) 
n 

for r > 0 there can exist finite natural wavenumbers that coincide with the corresponding 
wave numbers of free oscillations around a cylinder of radius r. 

Consequently, for phase shifts ~ = 0 and ~ = ~ it is possible to have free oscillations 
that "do not notice" the blades of the cascade. This is explained by the fact that an inte- 
gral number of half-waves of the external field fits exactly between the blades in the azimuth 
direction (this number is even for ~ = 0 and odd for ~ = ~). The different free-oscillation 
modes in the given situations are determined by the values of the parameter k for which the 
infinite systems (3.5b), (3.6b) have a nontrivial solution. 

4. The eigenvalues of the system (2.3), (3.5b), and (3.6b) can be determined by the 
reduction method. To show this, we use the semiinversion method [5] to reduce the investi- 
gated systems to systems of equations of type 2. They can be written in the matrix form 

L ( k ) x =  x +  T(k)x = 0 ,  x ~  12 . 

I n v o k i n g  t h e  a s y m p t o t i c  r e p r e s e n t a t i o n s  f o r  t h e  c y l i n d e r  f u n c t i o n s  [6] and t h e  e s t i m a t e s  g i v e n  
i n  [ 5 ] ,  we e s t a b l i s h  by d i r e c t  v e r i f i c a t i o n  t h e  a n a l y t i c i t y  o f  t h e  o p e r a t o r - v a l u e d  f u n c t i o n  
T(k)  and t h e  c o m p a c t n e s s  o f  t h e  o p e r a t o r  T f o r  a l l  k .  A l s o ,  t h e  F r edho lm  a n a l y t i c a l  t h e o r e m  
[7] i m p l i e s  t h e  e x i s t e n c e  and a n a l y t i c i t y  o f  an o p e r a t o r - v a l u e d  f u n c t i o n  L - l ( k )  on t h e  e n t i r e  
complex  p l a n e  w i t h  t h e  e x c e p t i o n  o f  a d i s c r e t e  s e t  o f  e i g e n v a l u e s .  Then,  i n  a c c o r d a n c e  w i t h  
[ 8 ] ,  t h e  e i g e n v a l u e s  o f  t h e  r e d u c e d  s y s t e m s  c o n v e r g e  t o  t h e  e i g e n v a l u e s  o f  t h e  e x a c t  s y s t e m s  
as  t h e i r  o r d e r  i s  i n c r e a s e d .  On t h e  o t h e r  hand ,  each  e i g e n v a l u e  o f  t h e  e x a c t  s y s t e m  i s  t h e  
l i m i t  o f  t h e  e i g e n v a l u e s  o f  t h e  c o r r e s p o n d i n g  r e d u c e d  s y s t e m s .  

The p r i n c i p a l  d i f f i c u l t y  e n c o u n t e r e d  i n  d e t e r m i n i n g  t h e  m a t r i x  e l e m e n t s  i s  a s s o c i a t e d  
Z b e c a u s e  t h e  w i t h  t h e  c o m p u t a t i o n  o f  t h e  c y l i n d e r  f u n c t i o n s  i n v o l v e d  i n  t h e  r a t i o s  cH and cv ,  

Neumann f u n c t i o n  grows w i t h o u t  bound and t h e  B e s s e l  f u n c t i o n  d e c r e a s e s  w i t h  i n c r e a s i n g  ~. To 

su rmount  t h i s  d i f f i c u l t y  we r e p r e s e n t  ~H and ~Z i n  t e r m s  o f  t h e  r a t i o s  o f  c y l i n d e r  f u n c t i o n s :  

N v (x) ' = N v (z): 

We use recursion formulas to compute these ratios: 
N 

for Cv in the forward direction 

= 7- + - ' ( 4 . 1 )  

J in the reverse direction and for Cv 

(the directions are relative to increasing 9). 
the relation 

~j__ v + ~V+l (4.2) 
X 

_J/N is reduced by means of The computation of ~9 
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TABLE 1 

V h 0 ' Rch v IInh v v [ k 0 Re hV~" I I m h v  

2,40048 ] 2.2395 
5,52007 511i7 
8,65372 7,897 

"0,00004" 4 ti,79t53 
--0,0004 i4,9309t 
--0,004 

t0,68 I --0,4] 13,49 --0,96 

1"J / " 

! 
I 

I 
I 
I 

O,5r )u 
Fig. 2 

E~ E~ J 

~ 

iJ/ 
o 0,5~r u 

Fig. 3 

1,5 

0,5 ~ o,s . 

o,s h h o o,s h , h 

Fig. 4 

J / N  ~ J , V 

to the f u n c t i o n s  a l r e a d y  de te rmined .  The i n i t i a l  f unc t i ons  (4.1) and (4.3) a re  determined by  
r e p r e s e n t i n g  the ze ro th -  and f i r s t - o r d e r  c y l i n d e r  f u n c t i o n s  in  s e r i e s  form [6] ,  and for  (4.2) 
we use the  expres s ion  

, ; j = M  
x 7 (M~ x), 

where y(M, x) is the decomposition of the ratio JM(X)/JM_z(x) into a continued fraction [6]. 

For y(M, x) there is an upper bound on the error of approximation of this continued fraction 
by a finite segment YL(M, x): 

"1 :el ~ L-M-1 I?  (M,  x) __ ?L (M,  x) [ < [__~ ) M! (M+ t)! 
' (M-f-L.-~t) !"  

H and Z permi ts  the  domain of a p p l i c a t i o n  of the  The technique described here for computing ~v v 

calculated parameters of the problem to be expanded considerably. 

5. The results of a numerical calculation of the natural wavenumbers for a 20-blade 
cascade (for R = i, ~ = i) are summarized in Table 1 and shown in Figs. 2-4. The systems 
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(2.3), (3.5b), and (3.6b) were truncated to 50 equations for the calculations. The rate of 
convergence was tested by varying the number of equations of the truncated systems. It was 
confirmed that doubling the number of equations improves the precision of the natural wave- 
number in the fifth significant figure. 

To analyze the results we introduce the critical wavenumbers k ~ which we define as 
the natural wavenumbers of free-oscillation modes in the interblade domains bounded by arcs 
of circles enclosing the cascade. In the given situation the k ~ coincide with the roots of 
the equations 

Z~(k~ = O, 2v = N n ,  n = 0 , 1 , 2 , . . .  

The first five natural wavenumbers are given in Table 1 for a cascade with a degenerate core 
for ~ = 7, along with, for comparison, the nearest critical values, which are the roots of 

~ 0 [6] the equation Jo(k v) = 

Figure 2 shows the variation of the quantity ~ = Re k~(~, 0)/Re k (~, 0), and Fig. 3 

the variation of s v = exp {Im k (~, 0)} as a function of the phase shift ~ for the first 

three natural wavenumbers. We note that their minimum deviation from the real axis corre- 

sponds to the value of the parameter ~ = ~. This means that high-Q oscillations of resonators 
and the most pronounced acoustic resonance are possible for oscillations with the opposite 
phase in adjacent interblade domains. This conclusion does not contradict the results of the 
theory of plane infinite straight cascades [2, 9]. 

Figure 4 shows the real and imaginary parts of the first natural wavenumber as a func- 
tion of the hub ratio h = r/R for different phase shifts ~ = 0.17 and ~2 = ~. The quantities 
referred to their values for h, = 0.761 are plotted along the vertical axis: 

% = Re ~ (9~ h)/Re k o (9, h ,)  ; 8a = I m  k o (~, h)/Im k o (9, h , ) ,  

where ko(~, h,) = 0.645 -- i0.685 and ko(~2, h,) = 6.85 -- i0.45. It is important to note the 

difference in the behavior of the real part for different values of ~ as h § I. Here, as in 
the case of straight cascades [2], two limiting cases can be discerned: 

i) ~ = 7, when the natural wavenumbers are closest to their critical values and grow 

without bound together with them as h § i; 

2) ~ § 0, when the natural wavenumbers approach th~ values governing the free-oscilla- 

tion modes of the space surrounding the cascade and tend in the limit (h § i) to the natural 
wavenumbers of the oscillations around a cylinder of radius R. 

In particular, for ~ =0.17 the natural wavenumber limit coincides with the value k = 
0.5012 -- i0.6435, which is the natural wavenumber of the oscillations around a cylinder of 

radius R = 1 [3]. 

The maximum deviation of the natural wavenumbers from the real axis when the characteris- 
tic azimuthal and radial dimensions of the cascade coincide (h = h,) is evidently explained 
by the existence of a transition regime from free oscillations of one direction to oscillations 
of the other direction. Analyzing the data in [i0], we can conclude that a similar situation 

occurs for straight cascades. 
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LARGE-PARTICLE STUDY OF THE FLOW AROUND WORKING BLADES 

IN A STEAM TURBINE 

Yu. M. Davydov, V. D. Kulikov, and E. V. Maiorskii UDC 621.165-226.1.001.5 

High supersonic velocities and a very complicated flow structure occur in the flow 
around the blade profiles in steam turbines, particularly the peripheral sections of the 
latter stages in low-pressure cylinders. It is therefore impossible to predict details of 
the flow. Measurements on such blades are complicated and expensive. It is therefore desir- 
able to use numerical simulation in a preliminary analysis of the flow structure. 

For example, calculations have been performed by Godunov's method [i] on the working 
and nozzle profiles [2-4]. 

The large-particle method is now widely used [5, 6], particularly for many aspects of 
gas dynamics, including the calculation of internal flows [7]. Here we demonstrate its use 
in numerical examination of a new class of topics: calculating the flow around turbine blade 
profiles. 

Figure 1 shows one of the sets of blades (form I). The calculations were performed for 
a_n inlet angle BI = 163 ~ , an angle of attack i = BI -- Bo = +--4~ ' , and a relative pitch of 
t = t/b = 1.02. 

We considered typical modes of flow around the blades, in which subsonic velocities 
MI = 0.5 occurred at the inlet and supersonic ones M2 = 1.9. 

The working region ACDE (Fig. i) of rectangular shape is split up into several zones 
differing in the sizes of the rectangular cells in the immobile net. The smallest cells lie 
in the regions of the inlet edges F and the outlet ones K, where the curvature is maximal. 
Here the profile contour was calculated with the necessary accuracy. 

The total number of cells varied from 4000 to 6000. The calculations were performed 
with an ES-1040 computer (OS operating system) on a FORTRAN program; the run time for one 
model was not more than 6 h. 

The boundary conditions were specified as follows. At the boundaries AC and ED, 
periodicity conditions applied. The boundary AE (Fig. i) was taken at a distance t along 
the normal to the input front (line aS). Test calculations showed that any further increase 
in this distance had no effect on the results. The conditions for constancy of the entropy 
S, total enthalpy Jo, and direction of the velocity vector BI were taken at the boundary AE: 

:S~p/pk~ 2onst, J 0 - k . . - 1 - p  + - 2 -  const,~ ~1 const~ 

where p ,  p,  W, and k a r e  c o r r e s p o n d i n g l y  p r e s s u r e ,  d e n s i t y ,  v e l o c i t y ,  and i s e n t r o p e  param-  
e t e r s ,  Also  we m a i n t a i n e d  t he  c o n d i t i o n  f o r  c o n s e r v a t i o n  o f  t he  l e f t  Riemann i n v a r i a n t  i n  
each t ime l a y e r  [ 8 ] :  RH = W--  2a(k  -- 1 ) ,  where  a = r  
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